1,122 research outputs found

    Quantum Key Distribution over 67 km with a plug & play system

    Get PDF
    We present a fibre-optical quantum key distribution system. It works at 1550nm and is based on the plug & play setup. We tested the stability under field conditions using aerial and terrestrial cables and performed a key exchange over 67 km between Geneva and Lausanne.Comment: 8 pages, 3 figures, 2 tables. Submitted to the New Journal of Physic

    Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulses implementations

    Full text link
    We introduce a new class of quantum quantum key distribution protocols, tailored to be robust against photon number splitting (PNS) attacks. We study one of these protocols, which differs from the BB84 only in the classical sifting procedure. This protocol is provably better than BB84 against PNS attacks at zero error.Comment: 4 pages, 2 figure

    Faint laser quantum key distribution: Eavesdropping exploiting multiphoton pulses

    Get PDF
    The technological possibilities of a realistic eavesdropper are discussed. Two eavesdropping strategies taking profit of multiphoton pulses in faint laser QKD are presented. We conclude that, as long as storage of Qubits is technically impossible, faint laser QKD is not limited by this security issue, but mostly by the detector noise.Comment: 7 pages, 6 figure

    High rate, long-distance quantum key distribution over 250km of ultra low loss fibres

    Full text link
    We present a fully automated quantum key distribution prototype running at 625 MHz clock rate. Taking advantage of ultra low loss fibres and low-noise superconducting detectors, we can distribute 6,000 secret bits per second over 100 km and 15 bits per second over 250km

    Gene identification for the cblD defect of vitamin B12 metabolism

    Get PDF
    Background Vitamin B12 (cobalamin) is an essential cofactor in several metabolic pathways. Intracellular conversion of cobalamin to its two coenzymes, adenosylcobalamin in mitochondria and methylcobalamin in the cytoplasm, is necessary for the homeostasis of methylmalonic acid and homocysteine. Nine defects of intracellular cobalamin metabolism have been defined by means of somatic complementation analysis. One of these defects, the cblD defect, can cause isolated methylmalonic aciduria, isolated homocystinuria, or both. Affected persons present with multisystem clinical abnormalities, including developmental, hematologic, neurologic, and metabolic findings. The gene responsible for the cblD defect has not been identified. Methods We studied seven patients with the cblD defect, and skin fibroblasts from each were investigated in cell culture. Microcell-mediated chromosome transfer and refined genetic mapping were used to localize the responsible gene. This gene was transfected into cblD fibroblasts to test for the rescue of adenosylcobalamin and methylcobalamin synthesis. Results The cblD gene was localized to human chromosome 2q23.2, and a candidate gene, designated MMADHC (methylmalonic aciduria, cblD type, and homocystinuria), was identified in this region. Transfection of wild-type MMADHC rescued the cellular phenotype, and the functional importance of mutant alleles was shown by means of transfection with mutant constructs. The predicted MMADHC protein has sequence homology with a bacterial ATP-binding cassette transporter and contains a putative cobalamin binding motif and a putative mitochondrial targeting sequence. Conclusions Mutations in a gene we designated MMADHC are responsible for the cblD defect in vitamin B12 metabolism. Various mutations are associated with each of the three biochemical phenotypes of the disorder

    Robust polarization-based quantum key distribution over collective-noise channel

    Full text link
    We present two polarization-based protocols for quantum key distribution. The protocols encode key bits in noiseless subspaces or subsystems, and so can function over a quantum channel subjected to an arbitrary degree of collective noise, as occurs, for instance, due to rotation of polarizations in an optical fiber. These protocols can be implemented using only entangled photon-pair sources, single-photon rotations, and single-photon detectors. Thus, our proposals offer practical and realistic alternatives to existing schemes for quantum key distribution over optical fibers without resorting to interferometry or two-way quantum communication, thereby circumventing, respectively, the need for high precision timing and the threat of Trojan horse attacks.Comment: Minor changes, added reference

    Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking

    Full text link
    We report the experimental demonstration of a transmission scheme of photonic qubits over unstabilized optical fibers, which has the plug-and-play feature as well as the ability to transmit any state of a qubit, regardless of whether it is known, unknown, or entangled to other systems. A high fidelity to the noiseless quantum channel was achieved by adding an ancilla photon after the signal photon within the correlation time of the fiber noise and by performing quantum parity checking. Simplicity, maintenance-free feature and robustness against path-length mismatches among the nodes make our scheme suitable for multi-user quantum communication networks.Comment: 8 pages, 4 figures; published in New J. Phys. and selected in IOP Selec

    Characterization of A Novel Avalanche Photodiode for Single Photon Detection in VIS-NIR Range

    Full text link
    In this work we investigate operation in the Geiger mode of the new single photon avalanche photo diode (SPAD) SAP500 manufactured by Laser Components. This SPAD is sensitive in the range 400-1000nm and has a conventional reach-through structure which ensures good quantum efficiency at the long end of the spectrum. By use of passive and active quenching schemes we investigate detection efficiency, timing jitter, dark counts, afterpulsing, gain and other important parameters and compare them to the "standard" low noise SPAD C30902SH from Perkin Elmer. We conclude that SAP500 offers better combination of detection efficiency, low noise and timing precision

    Hacking commercial quantum cryptography systems by tailored bright illumination

    Full text link
    The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics. So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons. Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remote-controlled using specially tailored bright illumination. This makes it possible to tracelessly acquire the full secret key; we propose an eavesdropping apparatus built of off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photodiodes to detect single photons. We believe that our findings are crucial for strengthening the security of practical QKD, by identifying and patching technological deficiencies.Comment: Revised version, rewritten for clarity. 5 pages, 5 figures. To download the Supplementary information (which is in open access), go to the journal web site at http://dx.doi.org/10.1038/nphoton.2010.21
    • …
    corecore